Quantum interference effect and electric field domain formation in quantum well infrared photodetectors
نویسندگان
چکیده
An observation of quantum interference effect in photocurrent spectra of a weakly coupled bound-to-continuum multiple quantum well photodetector is reported. This effect persists even at high biases where the Kronig–Penney minibands of periodic superlattice potential in the continuum are destroyed. Our results show that electrons remain coherent over a distance of 40–50 nm. The observation was used to investigate electric field domain formation induced by sequential resonant tunneling in the superlattice. A large off-resonant energy level alignment between two neighboring wells in the high field domain was observed. © 1995 American Institute of Physics.
منابع مشابه
Modeling of High Temperature GaN Quantum Dot Infrared Photodetectors
In this paper, we present calculations for different parameters of quantum dot infrared photodetectors. We considered a structure which includes quantum dots with large conduction-band-offset materials (GaN/AlGaN). Single band effective mass approximation has been applied in order to calculate the electronic structure. Throughout the modeling, we tried to consider the limiting factors which dec...
متن کاملQuantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملElectric-field and space-charge distributions in InAs/GaAs quantum-dot infrared photodetectors: ensemble Monte Carlo particle modeling
We proposed a simplified quasi-three-dimensional model for nonequilibrium electron transport in quantum dot infrared photodetectors (QDIPs) based on an ensemble Monte Carlo particle method. Invoking the developed model, we calculated the electric-field and spacecharge distributions, in InAs/GaAs and InGaAs/GaAs QDIPs. q 2003 Elsevier Science Ltd. All rights reserved.
متن کاملQuantum-dot infrared photodetectors: a review
Quantum-dot infrared photodetectors (QDIPs) are positioned to become an important technology in the field of infrared (IR) detection, particularly for high-temperature, low-cost, high-yield detector arrays required for military applications. High-operating temperature (≥150 K) photodetectors reduce the cost of IR imaging systems by enabling cryogenic dewars and Stirling cooling systems to be re...
متن کاملPhysics of non-adiabatic transport and field-domain effect in quantum-well infrared photodetectors
A previous theory for studying the distribution of non-uniform fields in multiple-quantum-well photodetectors under an ac voltage is generalized by including non-adiabatic space-charge-field effects. Numerical calculations indicate that field-domain effects are only important at high temperatures or high voltages when both injection and sequentialtunneling currents are significant. On the other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996